Smart Parking
Seiring bertambahnya populasi dan juga jumlah kendaraan bermotor, maka semakin berkurang juga lahan parkir yang tersedia. Nantinya akan memaksa si pemilik kendaraan untuk memarkirkan kendaraannya hanya di tempat terbuka, tanpa ada pengawasan. Hal ini akan berakibat membuka kesempatan bagi oknum yang untuk melakukan tindak kriminal seperti pencurian
Oleh karena itu ,diperlukan suatu inovasi agar dapat menjamin keamanan kendaraan. Salah satu bentuk perwujudannya adalah dengan menggunakan Smart Garage yang memungkinkan pemilik kendaraan dapat memarkirkan kendaraannya dengan aman
- Memenuhi tugas Mikrroprosesor dan Mikrokontroler
- Menjelaskan prinsip Aplikasi ESP 32 UART
- Mensimulasikan rangkaian yang menggunakan Aplikasi ESP 32 UART
a. Power Supply
b. Voltmeter
c. Baterai
Spesifikasi dan Pinout Baterai- Input voltage: ac 100~240v / dc 10~30v
- Output voltage: dc 1~35v
- Max. Input current: dc 14a
- Charging current: 0.1~10a
- Discharging current: 0.1~1.0a
- Balance current: 1.5a/cell max
- Max. Discharging power: 15w
- Max. Charging power: ac 100w / dc 250w
- Jenis batre yg didukung: life, lilon, lipo 1~6s, lihv 1-6s, pb 1-12s, nimh, cd 1-16s
- Ukuran: 126x115x49mm
- Berat: 460gr
- Input voltage: ac 100~240v / dc 10~30v
- Output voltage: dc 1~35v
- Max. Input current: dc 14a
- Charging current: 0.1~10a
- Discharging current: 0.1~1.0a
- Balance current: 1.5a/cell max
- Max. Discharging power: 15w
- Max. Charging power: ac 100w / dc 250w
- Jenis batre yg didukung: life, lilon, lipo 1~6s, lihv 1-6s, pb 1-12s, nimh, cd 1-16s
- Ukuran: 126x115x49mm
- Berat: 460gr
Bahan
a. Resistor
b. Arduino Uno V2
e. Relay
Spesifikasi :- Trigger Voltage (Voltage across coil) : 12V DC
- Trigger Current (Nominal current) : 70mA
- Maximum AC load current: 10A @ 250/125V AC
- Maximum DC load current: 10A @ 30/28V DC
- Compact 5-pin configuration with plastic moulding
- Operating time: 10msec Release time: 5msec
- Maximum switching: 300 operating/minute (mechanically)
f. Motor DC
g. Matrix-8X8
- Trigger Voltage (Voltage across coil) : 12V DC
- Trigger Current (Nominal current) : 70mA
- Maximum AC load current: 10A @ 250/125V AC
- Maximum DC load current: 10A @ 30/28V DC
- Compact 5-pin configuration with plastic moulding
- Operating time: 10msec Release time: 5msec
- Maximum switching: 300 operating/minute (mechanically)
a. Arduino Uno
b. Resistor
PIR (Passive Infrared Receiver) merupakan sebuah sensor berbasiskan infrared. Akan tetapi, tidak seperti sensor infrared kebanyakan yang terdiri dari IR LED dan fototransistor. PIR tidak memancarkan apapun seperti IR LED. Sesuai dengan namanya ‘Passive’, sensor ini hanya merespon energi dari pancaran sinar inframerah pasif yang dimiliki oleh setiap benda yang terdeteksi olehnya. Benda yang bisa dideteksi oleh sensor ini biasanya adalah tubuh manusia
Diagram sebsor PIR:
PIR (Passive Infrared Receiver) merupakan sebuah sensor berbasiskan infrared. Akan tetapi, tidak seperti sensor infrared kebanyakan yang terdiri dari IR LED dan fototransistor. PIR tidak memancarkan apapun seperti IR LED. Sesuai dengan namanya ‘Passive’, sensor ini hanya merespon energi dari pancaran sinar inframerah pasif yang dimiliki oleh setiap benda yang terdeteksi olehnya. Benda yang bisa dideteksi oleh sensor ini biasanya adalah tubuh manusia.
Sensor PIR ini bekerja dengan menangkap energi panas yang dihasilkan dari pancaran sinar inframerah pasif yang dimiliki setiap benda dengan suhu benda diatas nol mutlak. Seperti tubuh manusia yang memiliki suhu tubuh kira-kira 32 derajat celcius, yang merupakan suhu panas yang khas yang terdapat pada lingkungan. Pancaran sinar inframerah inilah yang kemudian ditangkap oleh Pyroelectric sensor yang merupakan inti dari sensor PIR ini sehingga menyebabkan Pyroelectic sensor yang terdiri dari galium nitrida, caesium nitrat dan litium tantalate menghasilkan arus listrik. Mengapa bisa menghasilkan arus listrik? Karena pancaran sinar inframerah pasif ini membawa energi panas. Prosesnya hampir sama seperti arus listrik yangterbentuk ketika sinar matahari mengenai solar cell.
Relay adalah Saklar (Switch) yang dioperasikan secara listrik dan merupakan komponen Electromechanical (Elektromekanikal) yang terdiri dari 2 bagian utama yakni Elektromagnet (Coil) dan Mekanikal (seperangkat Kontak Saklar/Switch). Relay menggunakan Prinsip Elektromagnetik untuk menggerakkan Kontak Saklar sehingga dengan arus listrik yang kecil (low power) dapat menghantarkan listrik yang bertegangan lebih tinggi. Sebagai contoh, dengan Relay yang menggunakan Elektromagnet 5V dan 50 mA mampu menggerakan Armature Relay (yang berfungsi sebagai saklarnya) untuk menghantarkan listrik 220V 2A.
Ada besi atau yang disebut dengan nama inti besi dililit oleh sebuah kumparan yang berfungsi sebagai pengendali. Sehingga kumparan kumparan yang diberikan arus listrik maka akan menghasilkan gaya elektromagnet. Gaya tersebut selanjutnya akan menarik angker untuk pindah dari biasanya tutup ke buka normal. Dengan demikian saklar menjadi pada posisi baru yang biasanya terbuka yang dapat menghantarkan arus listrik. Ketika armature sudah tidak dialiri arus listrik lagi maka ia akan kembali pada posisi awal, yaitu normal close.
Fitur:
1. Tegangan pemicu (tegangan kumparan) 5V
2. Arus pemicu 70mA
3. Beban maksimum AC 10A @ 250 / 125V
4. Maksimum baban DC 10A @ 30 / 28V
5. Switching maksimum
g. Motor DC
Terdapat dua bagian utama pada sebuah Motor Listrik DC, yaitu Stator dan Rotor. Stator adalah bagian motor yang tidak berputar, bagian yang statis ini terdiri dari rangka dan kumparan medan. Sedangkan Rotor adalah bagian yang berputar, bagian Rotor ini terdiri dari kumparan Jangkar. Dua bagian utama ini dapat dibagi lagi menjadi beberapa komponen penting yaitu diantaranya adalah Yoke (kerangka magnet), Poles (kutub motor), Field winding (kumparan medan magnet), ArmatureWinding (Kumparan Jangkar), Commutator (Komutator)dan Brushes (kuas/sikat arang).
Pada prinsipnya motor listrik DC menggunakan fenomena elektromagnet untuk bergerak, ketika arus listrik diberikan ke kumparan, permukaan kumparan yang bersifat utara akan bergerak menghadap ke magnet yang berkutub selatan dan kumparan yang bersifat selatan akan bergerak menghadap ke utara magnet. Saat ini, karena kutub utara kumparan bertemu dengan kutub selatan magnet ataupun kutub selatan kumparan bertemu dengan kutub utara magnet maka akan terjadi saling tarik menarik yang menyebabkan pergerakan kumparan berhenti
Untuk menggerakannya lagi, tepat pada saat kutub kumparan berhadapan dengan kutub magnet, arah arus pada kumparan dibalik. Dengan demikian, kutub utara kumparan akan berubah menjadi kutub selatan dan kutub selatannya akan berubah menjadi kutub utara. Pada saat perubahan kutub tersebut terjadi, kutub selatan kumparan akan berhadap dengan kutub selatan magnet dan kutub utara kumparan akan berhadapan dengan kutub utara magnet. Karena kutubnya sama, maka akan terjadi tolak menolak sehingga kumparan bergerak memutar hingga utara kumparan berhadapan dengan selatan magnet dan selatan kumparan berhadapan dengan utara magnet. Pada saat ini, arus yang mengalir ke kumparan dibalik lagi dan kumparan akan berputar lagi karena adanya perubahan kutub. Siklus ini akan berulang-ulang hingga arus listrik pada kumparan diputuskan.
h. Lampu
Light Emitting Diode atau sering disingkat dengan LED adalah komponen elektronika yang dapat memancarkan cahaya monokromatik ketika diberikan tegangan maju. LED merupakan keluarga Dioda yang terbuat dari bahan semikonduktor.
i. Dioda
Dioda adalah komponen elektronika yang terdiri dari dua kutub dan berfungsi menyearahkan arus. Komponen ini terdiri dari penggabungan dua semikonduktor yang masing-masing diberi doping (penambahan material) yang berbeda, dan tambahan material konduktor untuk mengalirkan listrik.Dioda memiliki simbol sebagai berikut :
Light Emitting Diode atau sering disingkat dengan LED adalah komponen elektronika yang dapat memancarkan cahaya monokromatik ketika diberikan tegangan maju. LED merupakan keluarga Dioda yang terbuat dari bahan semikonduktor.
i. Dioda
Cara Kerja Dioda
Secara sederhana, cara kerja dioda dapat dijelaskan dalam tiga kondisi, yaitu kondisi tanpa tegangan (unbiased), diberikan tegangan positif (forward biased), dan tegangan negatif (reverse biased).
Secara sederhana, cara kerja dioda dapat dijelaskan dalam tiga kondisi, yaitu kondisi tanpa tegangan (unbiased), diberikan tegangan positif (forward biased), dan tegangan negatif (reverse biased).
A. Kondisi tanpa tegangan
Pada kondisi tidak diberikan tegangan akan terbentuk suatu perbatasan medan listrik pada daerah P-N junction. Hal ini terjadi diawali dengan proses difusi, yaitu bergeraknya muatan elektro dari sisi n ke sisi p. Elektron-elektron tersebut akan menempati suatu tempat di sisi p yang disebut dengan holes. Pergerakan elektron-elektron tersebut akan meninggalkan ion positif di sisi n, dan holes yang terisi dengan elektron akan menimbulkan ion negatif di sisi p. Ion-ion tidak bergerak ini akan membentuk medan listrik statis yang menjadi penghalang pergerakan elektron pada dioda.
Pada kondisi tidak diberikan tegangan akan terbentuk suatu perbatasan medan listrik pada daerah P-N junction. Hal ini terjadi diawali dengan proses difusi, yaitu bergeraknya muatan elektro dari sisi n ke sisi p. Elektron-elektron tersebut akan menempati suatu tempat di sisi p yang disebut dengan holes. Pergerakan elektron-elektron tersebut akan meninggalkan ion positif di sisi n, dan holes yang terisi dengan elektron akan menimbulkan ion negatif di sisi p. Ion-ion tidak bergerak ini akan membentuk medan listrik statis yang menjadi penghalang pergerakan elektron pada dioda.
B. Kondisi tegangan positif (Forward-bias)
Pada kondisi ini, bagian anoda disambungkan dengan terminal positif sumber listrik dan bagian katoda disambungkan dengan terminal negatif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Ion-ion negatif akan tertarik ke sisi anoda yang positif, dan ion-ion positif akan tertarik ke sisi katoda yang negatif. Hilangnya penghalang-penghalang tersebut akan memungkinkan pergerakan elektron di dalam dioda, sehingga arus listrik dapat mengalir seperti pada rangkaian tertutup.
Pada kondisi ini, bagian anoda disambungkan dengan terminal positif sumber listrik dan bagian katoda disambungkan dengan terminal negatif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Ion-ion negatif akan tertarik ke sisi anoda yang positif, dan ion-ion positif akan tertarik ke sisi katoda yang negatif. Hilangnya penghalang-penghalang tersebut akan memungkinkan pergerakan elektron di dalam dioda, sehingga arus listrik dapat mengalir seperti pada rangkaian tertutup.
C. Kondisi tegangan negatif (Reverse-bias)
Pada kondisi ini, bagian anoda disambungkan dengan terminal negatif sumber listrik dan bagian katoda disambungkan dengan terminal positif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Pemberian tegangan negatif akan membuat ion-ion negatif tertarik ke sisi katoda (n-type) yang diberi tegangan positif, dan ion-ion positif tertarik ke sisi anoda (p-type) yang diberi tegangan negatif. Pergerakan ion-ion tersebut searah dengan medan listrik statis yang menghalangi pergerakan elektron, sehingga penghalang tersebut akan semakin tebal oleh ion-ion. Akibatnya, listrik tidak dapat mengalir melalui dioda dan rangkaian diibaratkan menjadi rangkaian terbuka.
Pada kondisi ini, bagian anoda disambungkan dengan terminal negatif sumber listrik dan bagian katoda disambungkan dengan terminal positif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Pemberian tegangan negatif akan membuat ion-ion negatif tertarik ke sisi katoda (n-type) yang diberi tegangan positif, dan ion-ion positif tertarik ke sisi anoda (p-type) yang diberi tegangan negatif. Pergerakan ion-ion tersebut searah dengan medan listrik statis yang menghalangi pergerakan elektron, sehingga penghalang tersebut akan semakin tebal oleh ion-ion. Akibatnya, listrik tidak dapat mengalir melalui dioda dan rangkaian diibaratkan menjadi rangkaian terbuka.
D. Rumus
Volt meter DC merupakan alat ukur yang berfungsi untuk mengetahui beda potensial tegangan DC antara 2 titik pada suatu beban listrik atau rangkaian elektronika.
- begin() Untuk begin() digunakan dalam inisialisasi interface ke LCD dan mendefinisikan ukuran kolom dan baris LCD. Pemanggilan begin() harus dilakukan terlebih dahulu sebelum memanggil instruksi lain dalam library LCD. Untuk syntax penulisan instruksi begin() ialah sebagai berikut. lcd.begin(cols,rows) dengan lcd ialah nama variable, cols jumlah kolom LCD, dan rows jumlah baris LCD.
- clear() Instruksi clear() digunakan untuk membersihkan pesan text. Sehingga tidak ada tulisan yang ditapilkan pada LCD.
- setCursor() 19 Instruksi ini digunakan untuk memposisikan cursor awal pesan text di LCD. Penulisan syntax setCursor() ialah sebagai berikut. lcd.setCursor(col,row) dengan lcd ialah nama variable, col kolom LCD, dan row baris LCD.
- print() Sesuai dengan namanya, instruksi print() ini digunakan untuk mencetak, menampilkan pesan text di LCD. Penulisan syntax print() ialah sebagai berikut.lcd.print(data) dengan lcd ialah nama variable, data ialah pesan yang ingin ditampilkan.
Komunikasi UART (Universal Asynchronous Receiver Transmitter) adalah metode komunikasi data secara serial antara dua perangkat. Komunikasi serial berarti data dikirim satu bit demi satu bit, satu per satu. Arduino Uno memiliki satu antarmuka UART yang terletak pada pin 0 (RX) dan pin 1 (TX). Pin RX digunakan untuk menerima data dari perangkat lain, sedangkan pin TX digunakan untuk mengirim data ke perangkat lain.Untuk menggunakan komunikasi UART pada Arduino Uno, Anda perlu menghubungkan pin RX dan TX Arduino Uno ke pin RX dan TX perangkat lain. Setelah itu, Anda perlu menginisialisasi komunikasi serial di kedua perangkat.
Komunikasi UART dapat digunakan untuk berbagai keperluan, seperti:
- Menghubungkan Arduino Uno ke komputer untuk mengirim dan menerima data.
- Menghubungkan Arduino Uno ke sensor atau perangkat lain.
- Menghubungkan Arduino Uno ke jaringan komputer.
Pin RX dan TX adalah pin yang digunakan untuk komunikasi serial pada Arduino Uno. Pin RX digunakan untuk menerima data dari perangkat lain, sedangkan pin TX digunakan untuk mengirim data ke perangkat lain.
Pin RX dan TX menggunakan level tegangan logic 5V atau 3.3V, sesuai dengan hardware yang digunakan. Jika berbeda tenganganya kalian dapat menggunakan rangkaian pembagi tegangan (voltage devider) atau level converter.
Berikut adalah fungsi pin RX dan TX secara lebih detail:
- Pin RX
- Mengirim data ke Arduino Uno dari perangkat lain.
- Data yang dikirim ke Arduino Uno akan diinterpretasikan sebagai data biner.
- Data biner tersebut dapat berupa karakter, angka, atau data lainnya.
- Pin TX
- Mengirim data dari Arduino Uno ke perangkat lain.
- Data yang dikirim dari Arduino Uno harus berupa data biner.
- Data biner tersebut dapat berupa karakter, angka, atau data lainnya.
- Sensor infrared
- sensor PIR
- sensor suhu
- arduino uno
- LCD
- Matrix 8X8
- IC 74LS139
- L298 Motor Driver
- LED-Red
- Lamp
- Relay
- Motor
c. Rangkaian Simulasi dan Prinsip Kerja[Kembali]
Komunikasi UART (Universal Asynchronous Receiver Transmitter) adalah metode komunikasi data secara serial antara dua perangkat. Komunikasi serial berarti data dikirim satu bit demi satu bit, satu per satu. Arduino Uno memiliki satu antarmuka UART yang terletak pada pin 0 (RX) dan pin 1 (TX). Pin RX digunakan untuk menerima data dari perangkat lain, sedangkan pin TX digunakan untuk mengirim data ke perangkat lain.Untuk menggunakan komunikasi UART pada Arduino Uno, Anda perlu menghubungkan pin RX dan TX Arduino Uno ke pin RX dan TX perangkat lain. Setelah itu, Anda perlu menginisialisasi komunikasi serial di kedua perangkat.
Komunikasi UART dapat digunakan untuk berbagai keperluan, seperti:
- Menghubungkan Arduino Uno ke komputer untuk mengirim dan menerima data.
- Menghubungkan Arduino Uno ke sensor atau perangkat lain.
- Menghubungkan Arduino Uno ke jaringan komputer.
Pin RX dan TX adalah pin yang digunakan untuk komunikasi serial pada Arduino Uno. Pin RX digunakan untuk menerima data dari perangkat lain, sedangkan pin TX digunakan untuk mengirim data ke perangkat lain.
Pin RX dan TX menggunakan level tegangan logic 5V atau 3.3V, sesuai dengan hardware yang digunakan. Jika berbeda tenganganya kalian dapat menggunakan rangkaian pembagi tegangan (voltage devider) atau level converter.
Berikut adalah fungsi pin RX dan TX secara lebih detail:
- Pin RX
- Mengirim data ke Arduino Uno dari perangkat lain.
- Data yang dikirim ke Arduino Uno akan diinterpretasikan sebagai data biner.
- Data biner tersebut dapat berupa karakter, angka, atau data lainnya.
- Pin TX
- Mengirim data dari Arduino Uno ke perangkat lain.
- Data yang dikirim dari Arduino Uno harus berupa data biner.
- Data biner tersebut dapat berupa karakter, angka, atau data lainnya.
d. Flowchart dan Listing Program[Kembali]
- video teori lcd
- video teori arduino
- video teori Infrared
f. Download File[Kembali]
Download HMTL klik disini
Download listing program klik disini
Download video simulasi rangkaian klik disini
- Download Library
- Download datasheet
Tidak ada komentar:
Posting Komentar